Individualized Medicine and Biophysical System Dynamics: An Example from Clinical Practice in End Stage Renal Disease

Jim Rogers, Advance Management Group
Ed Gallaher, Ph.D.
Craig Hocum, PA, Mayo Clinic

29th International Conference of the System Dynamics Society,
July 24-28, 2011, Washington, D.C.

http://www.systemdynamics.org/conferences/2011
Three Messages

• Management of Anemia is a Critical Issue for 90% of Dialysis Patients

• System Dynamics Modeling Helped Redefine and Solve this Problem in Clinical Practice at Mayo Clinic

• System Dynamics Modeling Provides Tools for Learning in the Emerging World of Individualized Medicine
The Team

Ed. Gallaher, PhD.
PK/PD Simulation Modeling

Ron Chrisope
Application Development

Mark Diez
Data Management

Karl Rogers
System Operations

Jim Rogers
Overall Direction

Craig Hocum, P.A-C
Direct Patient Care

Advisory Team Members (Not Shown):

James McCarthy, M.D., Nephrology, Mayo Clinic

David Dingli, M.D., PhD., Hematology, Mayo Clinic

Steve Gudgell, Administration, Mayo Clinic

David Steensma M.D., Hematology, Harvard Medical School
Chronic Kidney Disease, Hemodialysis, and Anemia

- Chronic Kidney Disease (CKD): Any disease that leads to a permanent loss of kidney function.

- End Stage Renal Disease (ESRD): a complete/near complete failure of the kidneys to function normally.

- Hemodialysis (HD): One of several treatment options for CKD.

- 90% of HD patients require Erythropoietic Stimulating Agents (ESA) to Prevent and Control the Anemia of CKD.
Scratchpad - 406,000 Dialysis Patients in 2011 Means, Annually:

- Hemodialysis Activities Require More than 60K Person Years of Effort, Just for Patients!
- Estimated Reimbursement of $30,000 per patient = $12.2B /Yr.
Terms

• Hemoglobin
 – The Protein that Enables Transport of Oxygen to the Body and Carbon Dioxide from the Body to the Lungs

• Erythropoiesis
 – Greek: Erythro (“Red”) + Poiesis (“Making”)
 – Produces RBC’s – Red Blood Cells

• Erythropoietic Stimulating Agent (ESA)
 – A Class of Drugs Designed to Replace Erythropoietin

• Apoptosis
 – Greek: “Falling Leaves”
 – Refers to Programmed Cell Death
Anemia Among Dialysis Patients

• A Significant Quality of Life Issue for HD Patients
 – Loss of appetite
 – Sleep disturbances
 – Decreased exercise tolerance
 – Inability to concentrate
 – Generalized weakness or malaise, body aches
 – Lightheadedness, dizziness, fainting

• ESA and Iron Replacement Therapy *Can* Effectively Treat Anemia.

• However, Current Protocols do not Address “System as Cause” Issues.
Patient 2: Actual ESA Doses and Hgb Values following Standard Protocol

Day 1 to Day 721

- ESA Dose
- Hgb
- Hgb Low
- Hgb High
The Purpose of the Model: Find ESA Dosing Regimens That Stabilize a Patient’s Hgb in the Center of the Target Range

- **Hgb Too High:** Cardiovascular Damage, Thrombosis
- **Hgb Too Low:** Anemic

BTW: 10 - 13

Cyclic Period Typically 6-9 Months

Target Range

- > 13
- 10-13
- < 10

Months
Regulating The Rate of Erythropoiesis

- Increased Erythropoietin
- Decreased RBC Progenitor Apoptosis

15-20 Day Delay

Increased O₂ Carrying Capacity

O₂ Deficit

Normal Blood O₂ Level

 ESA Therapy

Increased Erythropoietin
Concept Map of Major Stocks and Flows of Erythropoiesis

Bone Marrow
- BFU Production
- Replicating CFUs
- Erythroblast Production
- Reticulocyte Development
- Reticulocyte Release
- CFU Survival
- Apoptosis

Circulation
- Maturing Reticulocytes
- RBC Production
- RBCs
- Hemoglobin
- ESA Level
- Dosing
- Eliminating
- ESA Half Life
- Feedback goes through here!

BFU: Blast Forming Unit
CFU: Colony Forming Unit
Using the Simulation Model to Study Hgb Responses to ESA Doses Recommended by Current Protocol

Pattern 1: Oscillation

- **X-axis:** Std Protocol Dose
- **Y-axis:** Simulated Hgb

Pattern 2: Stabilization at Some Value

- **X-axis:** Std Protocol Dose
- **Y-axis:** Simulated Hgb
Using the Simulation Model to Study Hgb Responses to ESA Doses Recommended by Current Protocol

Pattern 1: Oscillation

Pattern 2: Stabilization at Some Value
Patient 1: Comparison of Standard and Model Based Protocols

- **ESA Dose**
- **Hgb**
- **Hgb Low**
- **Hgb High**

D. 675

Day 1 to 1197
Patient 2: Comparison of Standard and Model Based Protocols

![Graph showing comparison of ESA Dose, Hgb, Hgb Low, and Hgb High between Standard Protocol and Model Based Protocol from Day 1 to Day 1645.](image-url)
Mayo Clinic Dialysis Services (MCDS)

- An Academic, Non-profit Institution
- Service Arm of Mayo Clinic Department of Nephrology and Hypertension
- 17 Dialysis Care Facilities
- 625-650 Prevalent Hemodialysis Patients
- 15 Physicians; 7 Allied Staff - 2 PAs, 2 NPs, 3 RNs
- Common Policies & Procedures
- Shared Dialysis Database
Implementation Timeline

<table>
<thead>
<tr>
<th>Milestone</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reporting and Process Improvement Project Initiated</td>
<td>1Q 2007</td>
</tr>
<tr>
<td>Observation of Meaningful Dynamic Patterns</td>
<td>1Q 2008</td>
</tr>
<tr>
<td>Erythropoietic Simulation Model Ready for Testing</td>
<td>2Q 2008</td>
</tr>
<tr>
<td>Two Pilot Studies Complete</td>
<td>4Q 2008</td>
</tr>
<tr>
<td>Organization-Wide Rollout Complete</td>
<td>3Q 2009</td>
</tr>
<tr>
<td>90% of Patients Stabilized in Target Range of 10-13</td>
<td>2Q 2010</td>
</tr>
<tr>
<td>75% of Patients Stabilized in Target Range of 10-12</td>
<td>3Q 2010</td>
</tr>
</tbody>
</table>
Sample Behavior Over Time (BOT) Chart

- Actual Hgb
- Projected Hgb
- Simulated Historical Hgb
- Iron
- TFS
- Actual Iron Dose
- Recommended ESA Dose
- Actual ESA Dose
Improved Healthcare Value Delivery

• Patient Quality of Life

• Staff Productivity

• Dramatic Cost Reductions
% Patients with Hgb < 10, BTW 10-13, > 13, and BTW 10-12

- < 10
- BTW 10-13
- > 13
- BTW 10-12

- May-07: 3%
- Aug-07: 3%
- Nov-07: 3%
- Feb-08: 3%
- May-08: 3%
- Aug-08: 3%
- Nov-08: 3%
- Feb-09: 3%
- May-09: 3%
- Aug-09: 3%
- Nov-09: 3%
- Feb-10: 3%
- May-10: 3%
- Aug-10: 3%
- Nov-10: 3%
- Feb-11: 3%
- May-11: 3%

- June-07: 32%
- Jul-07: 32%
- Aug-07: 32%
- Sep-07: 32%
- Oct-07: 32%
- Nov-07: 32%
- Dec-07: 32%
- Jan-08: 32%
- Feb-08: 32%
- Mar-08: 32%
- Apr-08: 32%
- May-08: 32%
- Jun-08: 32%
- Jul-08: 32%
- Aug-08: 32%
- Sep-08: 32%
- Oct-08: 32%
- Nov-08: 32%
- Dec-08: 32%
- Jan-09: 32%
- Feb-09: 32%
- Mar-09: 32%
- Apr-09: 32%
- May-09: 32%
- Jun-09: 32%
- Jul-09: 32%
- Aug-09: 32%
- Sep-09: 32%
- Oct-09: 32%
- Nov-09: 32%
- Dec-09: 32%
- Jan-10: 32%
- Feb-10: 32%
- Mar-10: 32%
- Apr-10: 32%
- May-10: 32%
- Jun-10: 32%
- Jul-10: 32%
- Aug-10: 32%
- Sep-10: 32%
- Oct-10: 32%
- Nov-10: 32%
- Dec-10: 32%
- Jan-11: 32%
- Feb-11: 32%
- Mar-11: 32%
- Apr-11: 32%
- May-11: 32%
Before and After Distribution of Hemoglobin Values

Target Range

Percentage of Patients

- < 9.0
- 9.0-9.49
- 9.5-9.99
- 10.0-10.49
- 10.5-10.99
- 11.0-11.49
- 11.5-11.99
- 12.0-12.49
- 12.5-12.99
- 13.0-13.49
- 13.5-13.99
- > 14

Jan-07 vs. May-11
Observed Reductions in Hospitalizations

(Currently Under Study)

<table>
<thead>
<tr>
<th>Measurement</th>
<th>Before</th>
<th>After</th>
<th>% Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discharges per Patient Year</td>
<td>3.14</td>
<td>2.28</td>
<td>-27%</td>
</tr>
<tr>
<td>Days Hospitalized per Patient Year</td>
<td>12.2</td>
<td>8.52</td>
<td>-30%</td>
</tr>
</tbody>
</table>
A Generalized Methodology for Biophysical System Dynamics

• “... applies to all of medicine.”

• “... could revolutionize medical care.”

• “... asks exactly the right questions ... which are not being asked in medical schools.”

• “... effectively addresses a fundamental issue at the core of medical care: homeostasis.”

• “Places us in grave danger of actually learning something!”
Future Applications and Development

- Extensions to the Erythropoietic Model
- Methadone dosing learning environment
- Antibiotics
- Immunosuppressants
- Anticoagulants
- Collaboration with Emerging “Departments of Systems Biology”
- Biophysical System Dynamics SIG
Three Messages

• Management of Anemia is a Critical Issue for 90% of Dialysis Patients

• System Dynamics Modeling Helped Redefine and Solve this Problem in Clinical Practice at Mayo Clinic

• System Dynamics Modeling Provides Tools for Learning in the Emerging World of Individualized Medicine